Tuesday, June 21, 2011

At the end of WWII - ENIAC, or Electronic Numerical Integrator Analyzor and Computer, is developed by the Ballistics Research Laboratory in Maryland to assist in the preparation of firing tables for artillery. It is built at the University of Pennsylvania's Moore School of Electrical Engineering and completed in November 1945.

ENIAC was designed to calculate artillery firing tables for the United States Army's Ballistic Research Laboratory. When ENIAC was announced in 1946 it was heralded in the press as a "Giant Brain". It boasted speeds one thousand times faster than electro-mechanical machines, a leap in computing power that no single machine has since matched. This mathematical power, coupled with general-purpose programmability, excited scientists and industrialists. The inventors promoted the spread of these new ideas by teaching a series of lectures on computer architecture.

The ENIAC's design and construction was financed by the United States Army during World War II. The construction contract was signed on June 5, 1943, and work on the computer began in secret by the University of Pennsylvania's Moore School of Electrical Engineering starting the following month under the code name "Project PX". The completed machine was announced to the public the evening of February 14, 1946 and formally dedicated the next day at the University of Pennsylvania, having cost almost $500,000 (nearly $6 million in 2010, adjusted for inflation). It was formally accepted by the U.S. Army Ordnance Corps in July 1946. ENIAC was shut down on November 9, 1946 for a refurbishment and a memory upgrade, and was transferred to Aberdeen Proving Ground, Maryland in 1947. There, on July 29, 1947, it was turned on and was in continuous operation until 11:45 p.m. on October 2, 1955.

See Figures below of the ENIAC computers:

ENIAC was conceived and designed by John Mauchly and J. Presper Eckert of the University of Pennsylvania. The team of design engineers assisting the development included Robert F. Shaw (function tables), Chuan Chu (divider/square-rooter), Thomas Kite Sharpless (master programmer), Arthur Burks (multiplier), Harry Huskey (reader/printer) and Jack Davis (accumulators).

The ENIAC was a modular computer, composed of individual panels to perform different functions. Twenty of these modules were accumulators, which could not only add and subtract but hold a ten-digit decimal number in memory. Numbers were passed between these units across a number of general-purpose buses, or trays, as they were called. In order to achieve its high speed, the panels had to send and receive numbers, compute, save the answer, and trigger the next operation—all without any moving parts. Key to its versatility was the ability to branch; it could trigger different operations that depended on the sign of a computed result.

Besides its speed, the most remarkable thing about ENIAC was its size and complexity. ENIAC contained 17,468 vacuum tubes, 7,200 crystal diodes, 1,500 relays, 70,000 resistors, 10,000 capacitors and around 5 million hand-soldered joints. It weighed more than 30 short tons (27 t), was roughly 8 by 3 by 100 feet (2.4 m × 0.9 m × 30 m), took up 1800 square feet (167 m2), and consumed 150 kW of power. Input was possible from an IBM card reader, and an IBM card punch was used for output. These cards could be used to produce printed output offline using an IBM accounting machine, such as the IBM 405.[1]


[1] ENIAC; http://en.wikipedia.org/wiki/Eniac


No comments:

Post a Comment